Dual Solutions for Nonlinear Flow Using Lie Group Analysis

نویسندگان

  • Muhammad Awais
  • Tasawar Hayat
  • Sania Irum
  • Salman Saleem
  • Saeed Islam
چکیده

`The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

A Technique to Classify the Similarity Solutions of Nonlinear Partial (Integro-)Differential Equations. I. Optimal Systems of Solvable Lie Subalgebras

Lie group analysis is a powerful tool for obtaining exact similarity solutions of nonlinear (integro-) differential equations. In order to calculate the group-invariant solutions one first has to find the full Lie point symmetry group admitted by the given (integro-)differential equations and to determine all the subgroups of this Lie group. An effective, systematic means to classify the simila...

متن کامل

Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method

The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathemat...

متن کامل

ar X iv : h ep - t h / 92 10 08 3 v 1 1 5 O ct 1 99 2 QUASI - PERIODIC SOLUTIONS FOR MATRIX NONLINEAR SCHRÖDINGER EQUATIONS

The Adler-Kostant-Symes theorem yields isospectral hamiltonian flows on the dual˜g + * of a Lie subalgebrã g + of a loop algebrã g. A general approach relating the method of integration of Krichever, Novikov and Dubrovin to such flows is used to obtain finite-gap solutions of matrix Nonlinear Schrödinger Equations in terms of quotients of θ-functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015